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Despite significant effort put into research and development of defense mechanisms, new malware is continu-
ously developed rapidly, making it still one of the major threats on the Internet. For malware to be successful,
it is in the developer’s best interest to evade detection as long as possible. One method in achieving this is
using Code Injection, where malicious code is injected into another benign process, making it do something
it was not intended to do.

Automated detection and characterization of Code Injection is difficult. Many injection techniques depend
solely on system calls that in isolation look benign and can easily be confused with other background system
activity. There is therefore a need for models that can consider the context in which a single system event
resides, such that relevant activity can be distinguished easily.

In previous work, we conducted the first systematic study on code injection to gain more insights into
the different techniques available to malware developers on the Windows platform. This paper extends this
work by introducing and formalizing Behavior Nets: A novel, reusable, context-aware modeling language that
expresses malicious software behavior in observable events and their general interdependence. This allows
for matching on system calls, even if those system calls are typically used in a benign context. We evaluate
Behavior Nets and experimentally confirm that introducing event context into behavioral signatures yields
better results in characterizing malicious behavior than the state of the art. We conclude with valuable insights
on how future malware research based on dynamic analysis should be conducted.
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1 Introduction

Despite a significant effort put into research and development of defense mechanisms [11, 29], new
malware is continuously developed at a rapid pace, making it still one of the major threats on the
Internet [13].

For malware to be successful, it is in the author’s best interest to make sure that their samples
stay undetected for as long as possible [50]. One of the techniques that can be used to evade detec-
tion is code injection. Code injection is defined as the process in which an application copies pieces
of its code into another running program. This running program is then tricked into executing the
injected code, making it perform something it was not originally intended to [12, 16, 46]. By ex-
tension, if a malicious program copies its malicious code into a legitimate application, it is not the
malware itself that exhibits the malicious behavior, but rather the application that was previously
considered benign. As a consequence, scanning an executable file for suspicious code might not
be sufficient, making the task of automating threat detection significantly more involved [50].

While code injection is often considered one of the main features of many malware families,
the vast variety of code injection techniques is often overlooked by many sandboxes, which may
lead to an incorrect assessment of the (malicious) capabilities of a sample: Existing solutions often
rely on heuristics that look for specific byte patterns in the file [10, 22], the existence of suspicious
memory pages in running processes [23, 26] or listen for calls to Windows APIs that are often
associated with code injection [4, 5, 12, 15]. A main limitation of these heuristics is that many
types of malicious behavior, including code injection, often cannot be reduced to a single API call
or other observable system event. Instead, many tactics often comprise a sequence of carefully
chosen API calls that in isolation look benign but when considered together become malicious.
For example, the three Windows APIs NtAllocateVirtualMemory, NtWriteVirtualMemory, and
NtCreateThread are commonly used in operations involving memory allocations, memory ma-
nipulations, and the creation of threads respectively in benign processes. However, when given
specific arguments and called one after the other, they can form the basis of many code injection
techniques. This makes detection and characterization of malicious behavior difficult, as it is not
always clear whether a call to one of these APIs is part of a chain of events, or simply part of
background noise.

In prior work [56], we conducted, to the best of our knowledge, the first systematic study on
code injection to gain more insights into the different techniques available to malware developers
on the Windows platform. We identified 17 different code injection techniques and categorized
them in a taxonomy based on their common requirements and characteristics. This showed that
many techniques operate fundamentally differently from each other, and indeed often require mul-
tiple (benign) system calls for them to manifest. Leveraging our taxonomy, we then proceeded by
measuring the prevalence of these techniques in the general malware scene for the years 2017
and 2021 and found that there is an upward trend towards what we call passive techniques. These
techniques almost exclusively make use of very benign-looking APIs in sequence and let the un-
derlying operating system itself do most of the heavy lifting. This further stresses the need for a
better characterization system that can deal with similar malicious behavior.

In our previous study, to detect the use of any of these code injection techniques, we prototyped
a graph-based solution in our measurement framework inspired by dependency graphs [35] and

ACM Trans. Priv. Sec., Vol. 28, No. 3, Article 33. Publication date: August 2025.


https://doi.org/10.1145/3729228

Context-Aware Behavior Modeling for Code Injection-Based Windows Malware 33:3

Petri Nets [45]. In this extension paper, we aim to generalize this solution by formalizing it into a
novel, reusable modeling language which we call Behavior Nets. Behavior Nets describe malicious
software behavior in terms of observable system events (such as API and system calls) with a
particular focus on their interdependence. By introducing constraints on the arguments that each
event is invoked with, a Behavior Net can be made aware of the context in which a single event
resides. We then use this to identify and relate dependent events relevant to the malicious behavior
and disregard other events originating from background (benign) system activity. We evaluate the
effectiveness of this approach and experimentally confirm that Behavior Nets are more effective in
reliably characterizing malicious behavior, in comparison with strategies often employed by other
commonly adopted sandbox solutions. We conclude by providing insights on how future malware
analysis research based on dynamic analysis should be conducted.

In short, we extend our prior work [56] with original concepts, discussions, and new results,
and we make the following contributions with respect to our previous paper:

— Behavior Nets: We design and formally specify a novel, context-aware modeling language,
Behavior Nets, to characterize code injection techniques in terms of the required observable
system events and their interdependence. We also provide a reference implementation in-
cluding a domain-specific language (DSL) to easily and concisely define other types of
behavior.

— Comparison with existing signature models: We provide an extensive evaluation of
the effectiveness of Behavior Nets by comparing it to existing behavior fingerprinting tech-
niques used in commonly available sandbox solutions.

— Insights for future malware behavioral research: We conclude by providing important
insights on how research based on malware behavioral analysis should be reliably conducted
in the future.

In the spirit of open science, we publish all our code and findings at https://github.com/utwente-
scs/behavior-net.

2 Background

We begin by revisiting the concept of code injection, and reintroducing the terms that were also
introduced in [56].

2.1 Code Injection Fundamentals

Code injection can be defined as the act of copying and executing code in the context of another
process. An injector typically starts by selecting one or more victim processes to inject into. Victim
processes can be any process running on the system, or a new process that the injector itself starts
up. The injector proceeds by finding either existing writeable memory pages already present in
the victim process or may allocate new ones, to then copy new code into — often referred to as
the payload. Finally, the injector ensures the memory pages the payload is copied into are marked
executable and then tricks the victim process into executing it. Ultimately, the goal of code injection
is to alter the behavior of the victim process, making it do something it is not intended to do.

Injecting code into another process is an effective way to hide the true (malicious) intentions
of a program. Detection mechanisms that solely focus on analyzing the sample itself might not
pick up on the behavior offloaded to the victim process. Especially victim processes from a known
vendor are an attractive option for an injector process, as these programs are often blindly trusted
by anti-malware [16, 46]. For these reasons, several variants of code injection have been adopted
by modern malware as a detection evasion technique, and are often recognized as a main feature
a malware family is often characterized with by security vendors [25, 49, 60].
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Unfortunately, fully abolishing the use of code injection is not a practical solution for mitigat-
ing the threat code injection brings. This is because several types of legitimate software use code
injection in benign contexts as well. For example, many debuggers rely on injecting small chunks
of code into the target process to stop its execution (typically using instructions that trigger break-
point trap exceptions [1, 27]) and then read its internal state. Additionally, many operating systems
feature shim infrastructures to make up for incompatible version updates. These are implemented
by hooking into API functions provided by the underlying operating system and redirecting them
to injected shim code that simulates the original behavior of the API before a breaking change [36].
Finally, as was demonstrated in [56], some accessibility programs such as the virtual display key-
board on the Microsoft Windows operating system may use code injection to simulate keystrokes
and other types of inputs and inject them into the event loop of other applications. Prohibiting
code injection would thus mean giving up on these use cases and frameworks.

2.2 Code Injection Techniques

In our previous work [56], we queried various sources that are well-known in the security
community to obtain a representative set of code injection techniques. These include the
MITRE framework, as well as technical malware briefings provided by six well-known security
companies, including The Infosec Institute, Elastic Security, MalwareBytes, F-Secure, Symantec,
and Kaspersky. We also included various blog posts of individual security researchers with
example implementations and variations of the techniques. Since malware authors typically aim
to maximize their attack surface, we select only the techniques that work on Windows 10 (as it
is the most market-dominant OS at the time of conducting this research [57]), and do not have
a dependency on extra (third-party) software that needs to be installed separately. With this
process, we selected the following 17 techniques:

Shellcode Injection. This technique is the most fundamental form of code injection and serves
as a base for many other techniques. First, the victim process is opened using a system call to
NtOpenProcess and memory is allocated within this process using NtAllocateVirtualMemory
with the PAGE_EXECUTE_READWRITE protection bit set. Then, shellcode is transmitted into this
allocated memory using the NtWriteVirtualMemory function. Finally, a thread with the address
of the injected shellcode as its entry point is created within the victim process, usually through
an API such as CreateRemoteThread or using the underlying system call NtCreateThreadEx
directly [23].

PE Injection. PE injection extends Shellcode Injection by including additional logic to support
injecting entire Portable Executable (PE) files, the standard file format used on Windows to
store binary compiled executable files. This additional logic prepares a payload that looks exactly
like a PE as if it were mapped into memory by Windows itself, by manually aligning each section
in the file to the right virtual addresses, resolving function addresses used by the PE, and applying
any base relocations present in the headers. This allows for easier development of larger, more
complex payloads written in higher-level languages as opposed to small (handcrafted) assembly
code. As these extra steps in the payload preparation can be implemented fully without the need
for adding additional system calls, the system call profile of this technique is identical to Shellcode
Injection [55].

Classic DLL Injection. Direct calls to NtAllocateVirtualMemory with the PAGE_EXECUTE_
READWRITE bit set are often considered suspicious by state-of-the-art [23, 26]. Classic DLL In-
jection avoids calls like these by first writing the payload into a Dynamic-Link Library
(DLL) file on the disk instead. The injector then allocates some non-executable memory (i.e.,
NtAllocateVirtualMemory but with the PAGE_READWRITE bit set) to write the file path of the
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newly created DLL into (NtWriteVirtualMemory). Then it leverages NtCreateThreadEx to create
anew thread starting at LoadLibrary — a user-mode function provided by Windows itself respon-
sible for loading DLL files dynamically — with its first argument set to the address of the injected
file path. As a result, the victim process is tricked into calling LoadLibrary with the path to the
payload DLL, loading and executing it as if it was a normal dependency. This approach avoids the
allocation of suspicious executable memory pages, at the cost of requiring two extra system calls
NtCreateFile and NtWriteFile to write the DLL to the disk [20, 42].

Reflective DLL Injection and Memory Module Injection. These two techniques are varia-
tions of Classic DLL Injection that add similar logic found in PE Injection to reimplement the
functionality of LoadLibrary. This way, they avoid the call to the original function (which could
be monitored) and can also keep the payload DLL in memory (avoiding the need for extra calls
to NtCreateFile and NtWriteFile). Both injectors use Shellcode Injection to inject a payload
into the victim process, giving them identical system-call profiles. The difference between the two
techniques is that Reflective DLL Injection implements this manual mapping logic on the side
of the victim process (i.e., the payload is mapping itself), while Memory Module Injection per-
forms most of the manual mapping on the injector’s side instead. Memory Module Injection also
ensures that the mapped sections have the appropriate protection bits set (as opposed to only
PAGE_EXECUTE_READWRITE), which contributes to the stealthiness of the technique [23].

APC Shell and DLL Injection. These two techniques are variations of Shellcode and Classic
DLL Injection respectively, that avoid the creation of new threads using NtCreateThreadEx by
abusing the Asynchronous Procedure Call (APC) queue of an existing thread instead. APCs
are function calls that are scheduled to be invoked by a thread when the thread is in a waiting
state (e.g., waiting for an event or user input). By replacing the NtCreateThreadEx call with a
call to NtOpenThread and NtQueueApcThread, the injector can open an existing thread and queue
shellcode or a LoadLibrary call as an APC, which makes Windows automatically load and trigger
the execution of the payload whenever the thread is in such a state [38].

Process Hollowing and Thread Hijacking. These are one of the most commonly used methods
for performing code injection and are sometimes also referred to as RunPE. The injector either cre-
ates a new suspended process (NtCreateUserProcess with the THREAD_CREATE_FLAGS_CREATE_
SUSPENDED bit set) or suspends an existing one (NtOpenProcess followed by NtSuspendProcess
or NtSuspendThread) respectively, and unmaps (hollows out) all its sections from memory
(NtUnmapViewOfSection). Then, a new PE image is manually mapped into the victim process,
similar to how it is done in PE Injection, and the main thread’s program counter register is up-
dated using NtSetContextThread to redirect the execution to the entry point of the injected PE.
Finally, the process is resumed afterward using NtResumeThread [37, 44].

IAT Hooking. During the loading procedure of a PE file, Windows resolves the addresses of all
functions that the PE depends on and puts them in its Import Address Table (IAT). The IAT
Hooking technique replaces one of these addresses with one that points to the injected shellcode,
typically invoking NtWriteVirtualMemory. This way, when the victim process calls the original
function using its IAT, the payload will be triggered instead, without using thread creation or
redirection APIs, giving this technique a very low profile that is hard to detect on just a system
call level [28].

CTray VTable Hooking. This technique is similar to IAT Hooking but specifically targets
explorer.exe, the default file browser on Windows. Internally, the browser defines a class CTray
which implements the taskbar’s notification tray. By replacing the address of its WndProc function,
which is responsible for processing every message that the tray receives (e.g., paint events), the
technique activates injected shellcode the moment the tray processes such a message. In contrast
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to IAT Hooking however, this technique does require an extra system call to NtUserFindWindowEx
to find the window this CTray class is assigned to. Additionally, a call to NtUserSetWindowLong
or NtUserSetWindowLongPtr is required to reassign the address of WndProc. [43].

Shim Injection. Shim infrastructures are small programs attached to legacy software, that at-
tempt to simulate the original behavior of an API after a breaking change was introduced by a
Windows update. By extension, an injector can register itself as a shim infrastructure to load and
run arbitrary code within the context of software that requires these legacy features. It does so by
adding itself in the Windows Registry at a specific path using NtSetValueKey [24].

Image File Execution Options (IFEO). Image File Execution Options (IFEO) are settings stored
in the Windows Registry that dictate how a specific application identified by its name should be
started by Windows. One of the parameters it defines is the path to a debugger program that the ap-
plication’s memory should be replaced with when it is being loaded. Similar to Shim Injection, IFEO
Injection only requires adding itself as an entry in the Windows Registry using NtSetValueKey
to register itself as such a debugger and thus redirect execution to the payload [48].

Applnit_Dlls and AppCertDlls Injection. Similar to I[FEO, Applnit_Dlls and AppCertDlls are
two Windows Registry keys that store the paths to extra DLL files that should be loaded whenever
an application starts. The key difference is that these DLLs are loaded by any process that is started
after the Registry change was made, as opposed to specific processes [39, 40].

COM Hijacking. The Common Object Model (COM) is a Windows framework that allows for
software components to be used across multiple programming languages. Components are stored
in the Windows Registry as file paths to the DLLs that implement them and are loaded and in-
stantiated on-demand. COM Hijacking replaces one of these DLL file paths with a path of its own,
tricking the victim process into loading the payload DLL instead of the original component [41].

Windows Hook Injection. The Windows API exposes functions to subscribe to various
global system events such as mouse clicks and key presses. More specifically, by calling
NtUserSetWindowsHookEx, a thread can be instructed to invoke a callback defined in a specific
DLL when such an event occurs. Typically, threads are chosen from the current process. However,
NtUserSetWindowsHookEx takes in as argument a thread ID that allows for selecting any thread
running on the system. Windows Hook Injection abuses this by registering a callback for one of
the victim process threads to a function defined in a DLL of its own, letting it load and execute a
payload DLL [21].

2.3 Common Characteristics

From the studied techniques, we extracted common features that helped us characterize the tech-
niques more precisely in [56], which we will revisit below.

Moment of Execution. This trait describes the moment in which the code can be injected and
executed in the victim process. Some techniques can inject payloads at any time while the process
is running, whereas in others it is only possible upon startup of the victim process or operating
system.

Transmitter. The transmitter is the process that is responsible for copying the code into the victim
process. For many techniques, this is done by the injector process itself, usually through a call to
NtWriteVirtualMemory. However, some techniques trick the victim process into loading the code
instead, e.g., by letting it read a malicious file.

Catalyst. The catalyst is the process responsible for triggering the execution of the injected code.
Similar to the Transmitter, this is often done on the injector’s side, e.g., by creating a thread within
the victim process. Alternatively, the victim may also be tricked into calling the injected code itself.
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File Dependency. A good amount of techniques require a copy of the injected code on the disk,
usually in the form of a Dynamic Link Library (DLL). This means that such a file needs to be
stored before execution can take place.

Shellcode Dependency. Some techniques require a small chunk of code to be injected directly
into the victim process to execute the final payload.

Process and Threading Model. These two traits describe how malware selects and interacts
with the victim process and its threads. Some techniques interact with already running processes
or threads, while others spawn new ones. Alternatively, some techniques rely on the operating
system itself and do not directly interact with any process or thread at all.

Memory Manipulation Model. This describes the dependency on directly allocating or manip-
ulating the memory of the victim process. It is often accompanied by opening a process first and
is present in most classic techniques.

Configuration Model. Some injection techniques depend on changing specific settings of the
victim process or underlying OS. They may alter the Windows Registry, or install malicious plugins
in a user application such as a web browser. Often, they also rely on the existence of a file on the
disk.

2.4 Taxonomy

Using the identified traits, we define a taxonomy for code injection (Table 1) and discuss our classes
below.

Active and Passive Injections. The most distinguishing feature that we observe deals with the
level of interaction that is required by a code injection technique. Many techniques actively com-
municate with the victim process by creating or opening processes and threads and directly inter-
acting with their memory. Since these kinds of interactions often translate to distinct sets of API
calls, they can be observed by monitoring software more easily, which contributes to the stealth-
iness (or lack thereof) of the technique. Therefore, let us introduce the concept of active code
injection techniques:

Definition 1 (Active Techniques). A code injection technique is active if it directly interacts with
the victim process or one of its threads, or actively changes the victim process’ memory.

Many existing techniques are active. For example, Shellcode Injection opens a handle to the victim
process and uses it to directly inject executable memory into it with the help of a system call
such as NtWriteVirtualMemory [23]. In contrast, a technique that abuses, for example, the shims
infrastructure does not directly communicate with the target process, nor does it actively change
its memory. Rather, it lets the underlying OS load and execute the code instead [24]. Thus, Shim
Injection is considered a passive technique.

Intrusiveness and Destructiveness. We can further subdivide active techniques by looking at
the type of interaction that is required. For example, some techniques interrupt and manipulate
the original execution of the victim process. Sometimes this happens in a way that parts of the
application or the entire process stop working properly. Therefore, let us introduce the notion of
intrusive and destructive injection techniques:

Definition 2 (Intrusiveness). An active code injection technique is intrusive if it directly changes
(parts of) the victim process’ existing memory or threads.

Definition 3 (Destructiveness). A technique is destructive if it is intrusive and (parts of) the
application stop(s) working due to the intrusive intervention.
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Table 1. Taxonomy of Code Injection Techniques and their Characteristics
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1A: At any time, P: On process start, L: On library load.

2I: Injector process, V: Victim process.

3N: New process, thread or memory page creation, E: Existing process, thread or
memory page manipulation.

An example of a destructive technique is Process Hollowing, which creates a new victim process
in a suspended state and replaces the original memory content with new code [44]. As a result,
upon resuming, the victim process does not perform its original activity anymore. This is in con-
trast with Classic DLL injection, which forces the victim to load an additional library from the disk
without interrupting any threads or modifying their code [20]. Thus, Classic DLL Injection falls
under the non-intrusive category.

Configuration-based Injections. A more fine-grained subdivision can be made in our class of
passive code injection techniques. This subdivision groups together techniques that require spe-
cific changes in the Registry, and is a direct result of the Configuration Model trait. An example
of such a technique is AppInit_DLLs Injection, which registers a library file into the Registry. On
the other hand, the Windows Hook injection technique directly interfaces with system events and
does not require a persistent configuration stored on the disk.

Summary and Implications. Our systematization shows that different code injection techniques
take very different approaches to transmitting and executing code. As such, each technique has
its own set of characteristics that a detection mechanism should take into account. Popular
open-source sandboxes such as Cuckoo [5] and CAPE [4] implement detection mechanisms
using API call tracing for most active techniques. They also include some more generic heuristics
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Table 2. Two Recorded API Call Traces

(a) APC Shell Injection sample (b) Unrelated sample
Time Observed API call Time Observed API call
ti NtOpenProcess(0xAQ, ...) tj NtOpenProcess(0xD8, ...)
tit1 NtAllocateVirtualMemory(0xAQ, ...) ti+s1  NtAllocateVirtualMemory(0x10, ...)
tivo  NtWriteVirtualMemory(@xAQ, ...) tivo  NtWriteVirtualMemory(0x28, ...)

One sample implements APC Shell Injection and one sample uses similar but unrelated function calls.

for detecting transmissions from one process to another by looking for API calls commonly
associated with code injection (e.g., NtWriteVirtualMemory). However, the existence of passive
techniques indicates that monitoring these common API calls might be insufficient. Most passive
techniques are either not included in the signature database, or are not classified as a method
of injection. Besides, since passive techniques leverage features of the underlying OS to perform
their transmission and catalyst, the line between benign and injected memory pages becomes
significantly more blurred—both types of pages come from the same origin and are allocated in
the same way as normal pages. These important realizations indicate that more injections might
be adopted in the malware scene than was previously thought.

3 Methodology

We now present our methodology to characterize software behavior in malware samples, with
the starting point of code injection techniques. Since malware developers often obfuscate or pack
their samples, static analysis is not a feasible solution. We thus assume a system that treats the
sample as a black box and can dynamically record all events and side effects observed in the system
during the execution of the sample. We define a single event as a 2-tuple consisting of an identifier
of the invoked event and a set of arguments the event was invoked with. A typical event is a call
to a system function or service such as NtAllocateVirtualMemory or NtWriteVirtualMemory,
which are the main functions on the Windows platform used to allocate and write memory into
processes, respectively. We refer from now on to the recorded stream as the event stream.

It is important that the event stream is a recording of an entire system as opposed to a single
process. This is because code injection is inherently a procedure that involves at least two pro-
cesses (an injector and a victim process). Furthermore, there have been multiple cases of malware
where the workload is split up into a collection of smaller tasks which either were distributed
over various processes (including code injection itself) or were invoked one after the other as part
of a “kill-chain” where each process fulfilled a single task [17, 34, 47]. As such, isolating behavior
on a single process is therefore insufficient in fully capturing the workloads of modern malware.
We therefore assume a trace that includes events originating from any process running on
the system.

3.1 Challenges in Characterizing Malware Behavior

Finding evidence of malware behavior in a system-wide event stream recording requires overcom-
ing two main challenges. The first challenge pertains to the stream containing a lot of “background
noise”. Events produced by other running processes or internal functions within the operating
system itself can clutter the input stream with a lot of extra data points that need to be discarded.
This is in particular the case for commonly used APIs such as NtAllocateVirtualMemory,
which brings the problem of determining which calls to NtAllocateVirtualMemory are actually
relevant to the behavior that we try to recognize, and which are part of standard behavior
exhibited by the system itself (see Tables 2(a) and 2(b) for example traces).
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The second challenge relates to code injection techniques (as well as many other types of soft-
ware behavior) typically requiring multiple Windows API calls in sequence. For example, in many
code injection techniques, a call to NtAllocateVirtualMemory is often followed by a call to
NtWriteVirtualMemory to actually write the code into the previously allocated memory of the
victim process. Additionally, the same technique may also require creating a file on the disk using,
e.g., the system calls NtCreateFile and NtWriteFile, respectively. As the two API sequences are
completely independent, a malware developer has lots of freedom in the exact order they could
call them to get to their desired end result (e.g., one after the other, or some interleaved version of
the two API sequences). This (intentional) reordering of independent steps in their implementa-
tion, combined with the general nature of observing concurrent systems, forces us to assume some
non-determinism in the order in which certain APIs are called and thus appear in our event stream.
This also means we cannot rely on a single sequence of events to look for in our event stream.

3.2 Key Intuition

Our approach to solving both challenges described in Section 3.1 relies on two key insights. Firstly,
to address the background noise, we use the insight that related system calls will have similar if
not identical arguments. This intuitively makes sense. A call to NtAllocateVirtualMemory with
a certain process handle can only succeed if that same handle was opened before by a preceding
call to NtOpenProcess or similar. Thus, an event stream containing these two calls will therefore
also contain an occurrence of the same handle argument in both events and similar but unrelated
events will use different arguments instead (as can be seen in Tables 2(a) and 2(b)).

Secondly, to solve the problem of non-determinism, we use the insight that recognizing behav-
ior in a single event stream, where the exact order of independent operations does not matter but
the general dependency does, is the same as recognizing behavior in a concurrent system where
multiple independent processes run at the same time. Consider three threads Ta, Tg, and Tc, where
T4 and Tg run concurrently and T¢ waits for T4 and Tg to finish before it continues its execution.
If we record the activity of these three running threads, we end up with an event stream that starts
with an arbitrary interleaving of the events produced by T4 and Tg, and ends with the events of
Tc in its entirety. Now consider another thread Tp, which performs the exact same operations of
threads T4, T, and T¢ in this exact same order. What emerges is a resulting event stream that is
indistinguishable from the stream we constructed earlier from the individual threads. This shows
that modeling concurrent behavior is equivalent to modeling a single-threaded system where
independent operations might be reordered in a non-deterministic manner.

We use both of these insights as a foundation for the design of our detection models.

3.3 Petri Nets

One method to model concurrent behavior is by using Petri Nets. Let us first recall the definition
of a net:

Definition 4 (Net). A netis abipartite graph defined by the tuple N = (P, T, E), where P and T are
disjoint finite sets of nodes, representing places and transitions respectively, and E C (PXT)U(TXP)
denotes the set of edges between these nodes.

Petri Nets are nets where places may contain several marks called tokens [45]. More formally:

Definition 5 (Petri Net). A Petri Net is a tuple PN = (N, M), where N = (P, T, F) is a net, M :
P — N a mapping that assigns a number of tokens to every place.

Figure 1 depicts an example Petri Net with four places and four transitions. In the initial state
of this net (Figure 1(a)), we can see two tokens added to the places before the transitions ¢, and t,
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(a) Initial (b) After firing t, (c) After firing t4

Fig. 1. The evolution of a Petri Net with four places and four transitions. By convention, places are repre-
sented by circles and transitions are depicted using rectangles. Two tokens, indicated by the black dots in
place nodes, are flowing through the net as transitions t and t4 are being fired.

respectively (marked by two dots in the figure). The general idea of a Petri Net is that these tokens
flow through the net as transitions are fired repeatedly. The firing of a transition consumes one
token from all its input places and produces a new token in all of its output places. This can only
happen when this transition is enabled, that is, when for each of its input places there are enough
tokens present. In the initial state of the example net, ¢, is the only transition that is currently
enabled. Indeed, only this transition has a token in all of its input places. After firing t,, the token
passes through t, and then disables f, as there are no more tokens present in its input places
(Figure 1(b)). The power of Petri Nets lies in the fact that two edges in a net can converge into a
single transition node (such as the ones at the edges towards t4). Only after firing t,, transition #,
has enough tokens in all of its input places that can thus be fired (Figure 1(c)). Thus, this mechanism
can model and evaluate a thread barrier or the joining of multiple threads, where a third workload
waits for two other workloads to complete before continuing its execution.

Important to note here is that the order in which enabled transitions are fired can be completely
non-deterministic, as with concurrent systems.

3.4 Behavior Nets

We now extend the concept of Petri Nets and introduce a novel modeling language called Behavior
Nets. Behavior Nets are very similar to Petri Nets, but are designed specifically for recognizing
behavior patterns that can be precisely specified with event context in mind. In a Behavior Net,
the transition nodes are labeled with an event pattern that is expected in the event stream. An
event pattern consists of the expected event identifier and a set of constraints that need to be met
before the transition is considered enabled and thus can be traversed by a token. These constraints
can describe general bounds on arguments, but can also depend on values that were previously
observed in other, dependent events. Places and transitions are connected by edges in such a way
that they encode their general interdependence between the expected event patterns. Transitions
are then fired for each event in the input event stream where applicable.

Figure 2 depicts an example Behavior Net describing the general behavior of the APC Shell Code
Injection technique. In this net, we can see a chain of transition nodes labeled with the system
events NtOpenProcess, NtAllocateVirtualMemory and NtWriteVirtualMemory, indicating that
this order of events is to be expected in the event stream. Note that this does not mean this exact
sub-sequence of events should appear in the event stream. Rather, edges encode general depen-
dence between the events, and the chain could be interrupted by other independent system calls.
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| NtOpenProcess(n, ...) |
T

Q

| NtAllocateVirtualMemory(n, a, _, o, ...) |

(? |Nt0penThread(9, )

NtWriteVirtualMemory(n, f,...)
ped{a, ..,a+o}

5

NtQueueApcThread(d, _, A, ...)
Aed{a,..,a+o}

o

Fig. 2. A Behavior Net modeling APC Shell Injection. For brevity, we use underscores (‘_’) and ellipses (*..) to
discard irrelevant parameters. The accepting state is indicated by a double outline.

This is further exemplified by the node labeled with the NtOpenThread system call pattern. As this
node is not part of the same event chain on the left, it indicates an occurrence of NtOpenThread can
happen before, during, or after the execution of the left event chain, and thus forms a secondary,
independent chain of events. The two chains join together in a single transition node labeled with
NtQueueApcThread, indicating that both independent chains must have been observed in their en-
tirety, before the net can consider NtQueueApcThread events. This mechanism effectively solves
the problem of dealing with non-determinism in the input event stream, as independent steps can
be encoded without enumerating all possible orderings.

A second key addition to Petri Nets is that the event patterns in a Behavior Net are imple-
mented using transition functions that operate on a set of symbolic variables. These variables
are not part of the original program itself but are meant to capture parameters or a result of
an event and exist within the net alone. Notice in Figure 2 the transitions for NtOpenProcess,
NtAllocateVirtualMemory and NtWriteVirtualMemory have their first argument set to a sym-
bolic variable 7, indicating the observed first argument for all three system calls must be equal. We
also use extra constraints on the NtWriteVirtualMemory transition to restrict the value of f to the
interval {«, ..., + o}. This indicates that  should be a memory address that falls within mem-
ory that was previously allocated in the victim process by a call to NtAllocateVirtualMemory.
Finally, the transition node matching on NtQueueApcThread also illustrates how the result of two
independent API calls can be combined to express the catalyst of this technique, without assuming
a specific order in which its dependent APIs were invoked. Here, 6 represents a thread handle ob-
tained from a prior call to NtOpenThread, and A is an entry point address that is constrained to be
within the allocated memory range. The use of symbolic variables makes the Behavior Net aware
of the context an event resides in, and effectively solves the problem of distinguishing between
relevant and background events.

Figure 3 depicts a more elaborate example of a Behavior Net modeling the Process Hollowing
technique. This net showcases how nodes can also branch out into multiple parallel execution
paths (similar to a fork-construction in asynchronous programming). As with normal Petri Nets,
when the NtCreateUserProcess transition is fired, its three output places will all be populated
with a copy of the resulting output token, each instantiating a new independent potential system
call chain to be observed. We can also see that, similar to APC Shell Injection, these independent
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| NtCreateUserProcess(n,0,...) |

| NtAllocateVirtualMemory(n, a, _, o,...) |

NtUnmapViewOfSection(,...) | é |NtGetContextThread(9, )

NtWriteVirtualMemory(n, f, ...)
pefa, .. .a+c}

6 o 0

| NtSetContextThread(d,...) |
0
| NtResumeThread(#, ...) |

o

Fig. 3. A behavior net modeling the Process Hollowing technique. The NtCreateUserProcess transition
branches into three different independent paths that need to be observed after the first system call is ob-
served. The three branches also converge into the same node, indicating that all three paths must complete
before NtSetContextThread is observed.

call chains all converge back into a single node, this time matching on NtSetContextThread. This
indicates that the NtSetContextThread call is dependent on all three independent chains and thus
should only be considered by the model if all of the chains were observed in their entirety.

Finally, similar to other types of automaton, Behavior Nets include accepting places, denoted
in the figure with a double outline. When a token manages to move into an accepting place, the
behavior is considered recognized.

More formally, let S be the set of all symbolic variables, Z be the set of all possible values that
every s € S can be assigned with, 7 = P(S X Z) be the set of all tokens, and ¥ be the set of all
possible events that can happen. We then define a Behavior Net as follows:

Definition 6 (Behavior Net). A Behavior Net is a tuple B = (N, A, M, §), where

— N is a net,

— A C P is the set of all accepting places,

—M : P — P(7) is a marking; a mapping that assigns a set of tokens to every place in the
net,

—36:T - (ZxT — 7)is amapping that assigns transition functions to every transition in
the net.

In the remainder of this section, we will detail the exact execution semantics of Behavior Nets.

3.5 Event Patterns and Transition Functions

We now detail the exact role that tokens fulfill in a Behavior Net, and how they are used in transi-
tion functions to communicate event context and evaluate event patterns.

In a Behavior Net, a token 7 is associated with a mapping between symbolic variables and their
concrete observed values and thus can be seen as one possible instantiation or concretization of
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ALGORITHM 1: Enumerate new tokens for transition ¢ on event e.

1: procedure ENUMNEWTOKENS(t, €)
2:  n « |input places of #|

3:  if n =0 then

4 result «— {5:(e,0)}

5 else

6: result « 0

7 Q «— {M(p)|p € input places of ¢}

8 for all (r1,. .., 7,) € ComBINATIONS(Q) do
9 Teombined < TOKENCOMBINE(TY, . .., Tp)
10: Tnew < 6t(€, Tcombined)

11: if 7564 # L then

12: result « r U {Thew}

13:  return result

all symbolic variables in the net. We use the notation 7 = {@ := x, § := y} to denote that r assigns
the concrete values x and y to symbolic variables « and f, respectively. As transitions pull in
their incoming tokens, they produce new tokens with updated mappings according to the event
pattern they are annotated with. Transitions are then enabled if and only if there are enough
tokens in its input places, and these input tokens are consistent with the constraints described in
the event pattern.

In a Behavior Net, tokens define a TOKENCOMBINE operation. When two tokens 7; and 7, are
combined, a new token is produced that stores the values of both original tokens. If 7; assigns a
value to symbolic variable « that is different from the value in 7, we speak of 7; and 7, as tokens
that are in conflict. Combining any conflicting tokens results in L, the invalid token. Combining
any other token with L also results in L.

We add to every transition ¢ in the Behavior Net a corresponding transition function ; that
implements the rules defined in the event pattern. This function takes one recorded event e from
the observed system, as well as an input token 7. The idea is that §, transforms 7 into a new token
if and only if e and 7 match an expected pattern, and otherwise returns L.

Algorithm 1 describes the process of determining the new tokens when t is fired. Every combi-
nation of input tokens is first combined into a single token and then fed into §; together with the
current event to process. If it returns L, then this new token is discarded. Otherwise, it is added to
the result and will be propagated to every output place of the transition. In the case that there are
no input places, the empty token is provided to J;, and a single token is produced instead.

A token holding an instantiation of symbolic variables allows §; to decide whether a certain
observation is part of a chain of events that we are interested in. Taking the first example described
in Section 3.1, suppose §; matches on Windows API function calls to NtWriteVirtualMemory.
Without also using an input token in our matching criteria, a call to this function used by a code
injection would be indistinguishable from the ones introduced by background processes (see
Tables 2(a) and 2(b) for example traces). However, by also considering the arguments that were
used to call the function and trying to match them with the observed values stored in the incoming
tokens, we can verify that the first argument (the process handle) matches an argument that was
observed in prior calls to NtAllocateVirtualMemory or NtOpenProcess. By letting transition
functions assign new values to symbolic variables in a token, they can then communicate this
contextual information to other transitions in the net. This way, a Behavior Net can define con-
straints on event dependencies, decide which events are related to each other, and which can be
filtered out.

ACM Trans. Priv. Sec., Vol. 28, No. 3, Article 33. Publication date: August 2025.



Context-Aware Behavior Modeling for Code Injection-Based Windows Malware 33:15

ol fcal-@- - @

Fig. 4. A Behavior Net with three transitions matching on different events f, g, and h. The last two transitions
share a symbolic variable f, indicating the arguments for both g and h need to be the same value.

Table 3. The Evolution of the Marking of the Behavior Net in Figure 4 with Event Stream
(F(x),G(y), G(z), H(z))

(a) The evolution of the marking with token consumption. The model consumes
the token {& := x} at t;41, resulting in the greedy assignment of § := y, causing the
model to get stuck.

‘ Markings
Time Event M(po) M(p1) M(p2)
t; F(x) {a :=x}
Lit1 G(y) {a:=xp:=y}
tiva G(z) {a:=x,p =1y}
ti+s H(z) {a=x,p =1y}

(b) The evolution of the marking without token consumption. By not consuming the
token {& := x} in py at t;41, the model now considers both the possible assignments
p =y and f := zin p; and can proceed at ¢;,3 in producing tokens in p;.

Markings
Time Event | M(p,) M(py) M(ps)
ti F(x) | {a:=x}
e O | a=x} {a=xp:=y)

tivo G(iz) |{a:=x} {a=x,f=yh{a:=x,0:=z2}
ts  HE) |{a=x) {e=xf=ylla=xp=2) {a=xf=z)

In contrast to Petri Nets, all possible combinations of tokens are considered at once. The reason
for this is because upon consuming the event we do not know yet which combination of input
tokens will eventually lead to a token in an accepting place. Choosing only a single token arbitrarily
might result in greedily choosing the wrong token, making the net not progress further. Therefore,
to allow for multiple paths to be explored, a Behavior Net considers each combination of tokens
during a transition instead.

3.6 Token Consumption

Another crucial aspect of Behavior Nets is that input tokens of a transition are interpreted but no
longer consumed upon transitioning. Once a token is produced and put in a place, it always remains
in that place and is never destroyed. The reason behind this, is that it allows for backtracking
without introducing any extra logic. For example, consider a model such as the one in Figure 4, and
a sequence of events that contains the sub-sequence (F(x), G(y), G(z), H(z)). If we set @ := x and
B := z, then this would match the pattern <F(«), G(f), H()> as indicated by the net. Yet with the
default execution rules of a Petri net, this would not be recognized. This problem is demonstrated
in Table 3(a). Upon processing the first call to g, a net following the standard execution rules would
greedily consume the token stored at py, and the newly produced token at p; will set f := y. The
problem is that upon processing the second call to g, the transition between py and p; would no
longer be enabled since no token would be present anymore at py. This causes the model to get
stuck with a token that (incorrectly) assigns  := y, and the option to assign f = z will never be
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Analvzer Examination
i Environment
Samples Sample
C:\samples Machine
v — MFllr(l.al Behavior Event 1
$: ﬂi Nets Stream Monitor
Detection Report

Fig. 5. Framework architecture overview.

considered. However, if we preserve the token at py, then both options will be considered at the
second g call, and as such the model can continue progressing, as shown in Table 3(b).

A downside of not consuming tokens is that it can potentially lead to overflowing the net with
tokens. However, since Behavior Nets are meant to model dependency relations and thus cannot
contain cycles, this is only a theoretical issue that would not be a problem in practice for the
typical use-case of analyzing an event stream produced by a sandbox. Furthermore, we discard any
duplicated tokens present at a single place. This is an acceptable change, as semantically equivalent
tokens do not provide any new contextual information about a potential final matching of symbolic
variables to their concrete values.

4 Framework Architecture

Leveraging Behavior Nets, we build a framework that can automatically characterize the behavior
of malware samples based on a set of Behavior Nets. Figure 5 depicts an overview of our framework,
consisting of two components. The Analyzer acts as a front-end and is implemented in ~5,600
lines of C# code, excluding unit tests (~2,200 lines). It takes samples as input and uploads them
to an isolated Examination Environment. The Examination Environment executes each sample in
a Virtual Machine (VM) and records an API call trace which is sent back to the Analyzer. The
Analyzer then runs this trace through our Behavior Nets, and reports back which of the behaviors
were recognized.

4.1 The Analyzer

The Analyzer maintains and evaluates all the Behavior Nets that need to be considered when
analyzing the produced event streams. Such Behavior Nets are built from our repository of
behavior specifications. For this, we designed and built a Domain Specific Language (DSL)
that allows for defining graph structures and event patterns. Our DSL is heavily inspired by
the GraphViz DOT language [9] to specify graph-like structures, and YARA [10] and Haskell
[6] for their pattern-matching capabilities. While the main focus of this research is on the
characterization and use of the different code injection techniques, having a DSL readily available
in our reference implementation makes the analyzer easily extensible to include other types of
behavior. Furthermore, new types of code injection might be discovered in the future which could
then be added on demand as well.

An example of a Behavior Net expressed in our DSL implementing the APC Shell Injection
technique can be found in Listing 1. The snippet starts with the declaration of the four places
Do, P1, P2, p3 as well as an additional accepting place p,. Then follows a collection of transition
declarations, each defining an event pattern. Note how the symbolic variables are introduced in
the parameters of each event, the use of the discard symbol (‘) to ignore irrelevant parameters,
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and that extra constraints added to the transition are added in an optional where clause. Finally,
we can see the edges being drawn between the places and transitions at the bottom, effectively
constructing the graph as depicted in Figure 2.

1 behavior "APC Shell Injection" {

2 place [p0 pl1 p2 p3]

3 place p4 accepting

4

5 transition to {

6 NtOpenProcess (processHandle, _, _, _)

7 3

8 transition t1 {

9 NtAllocateVirtualMemory (processHandle, allocAddress, _, allocSize, _, _)
10 }

11 transition t2 {

12 NtWriteVirtualMemory (processHandle, writeAddress, _, _, _)
13 where

14 writeAddress in [allocAddress..(allocAddress + allocSize)]
15 }

16 transition t3 {

17 NtOpenThread(threadHandle, _, _, _)

18 }

19 transition t4 {

20 NtQueueApcThread(threadHandle, _, startAddress, _, _)

21 where

22 startAddress in [allocAddress..(allocAddress + allocSize)]
23 }

24

25 to -> pd -> t1 -> pl -> t2 -> p2 -> t4

26 t3 -> p3 -> t4

27 t4 -> p4

28 3}

Listing 1. A Behavior Net expressed using our Domain Specific Language (DSL), modeling the APC
Shell Injection technique. This net is equivalent to the net depicted in Figure 2.

4.2 Examination Environment

To be able to perform dynamic analysis, we rely on running samples in an isolated execution
environment. Our reference implementation is built on top of DRAKVUF [33]. DRAKVUF is a
virtualization-based, agentless, black-box binary analysis system that allows for monitoring API
calls, system calls, network traffic, and file system events.

There are several reasons why DRAKVUF is an ideal tool for a monitoring system. First, in
comparison to other popular solutions (e.g., Cuckoo [5]), DRAKVUF can monitor an entire system
as opposed to just individual processes. Given the nature of code injection techniques, this is a
crucial requirement for us. Furthermore, DRAKVUF observes runtime activity from outside of the
VM itself, by interfacing directly into the underlying virtualization software. This means that it
does not require an agent within the VM to implement the instrumentation. Consequently, this
vastly reduces the risk of being fingerprinted by evasive samples.

We use Windows 10 as an operating system for the VM since it is the most market-dominant
OS at the time of conducting this research [57]. To remove potential interference from other
programs, we disable various background services such as the Windows Search Indexer, Windows
Update, User Account Control (UAC), and Windows Defender. In fact, these services might
unnecessarily prevent the samples from running, or introduce artifacts in the streams as a result
of their own use of code injection to perform their own monitoring.
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We configured our analysis environment to allow access to the Internet, since malware often
relies on a connection to a remote control server, or it checks connectivity as a means of detecting
analysis environments. However, following the community practices [51, 52], we enforced limited
connectivity. We let the malware run limited time, deny potentially harmful traffic (e.g., spam),
and deploy our system on a separate sub-network where no production machines are connected.

Finally, after each analysis, we roll back the VM to a clean snapshot to revert any side effects
that malware might introduce. This also prevents potential denial of service attempts. These coun-
termeasures were approved by the Ethics Committee of our institution.

5 Experimental Results

We now continue with testing our reference implementation of Behavior Nets to assess their ca-
pabilities of characterizing the different types of code injection techniques. We also perform a
large-scale measurement of the general prevalence of the various code injection techniques in the
current malware scene.

5.1 Datasets and Setup

Ground Truth Dataset. To verify that our behavior characterization framework using Behavior
Nets correctly classifies the studied code injection techniques, we first assembled a ground truth
dataset of 63 code injection samples covering all the studied techniques, averaging 3.7 samples
per injection technique. Our dataset contains both samples that we implemented ourselves, as
well as handpicked open-source implementations and real-world samples which were all manually
verified. We also include 20 malicious samples that do not adopt code injection, as well as 1,147
benign applications to test against event streams that contain only benign behavioral data. The
benign samples include 976 executables from C: \Windows\System32 and C: \Windows\SysWOW64,
as well as 171 popular applications, e.g., VLC Media Player and WinSCP. We used the portable
versions of these popular applications to avoid needing to interact with any installation wizards
or similar, and thus make the pipeline easier to implement.

Real-world Malware Dataset. Next, to assess that Behavior Nets can also be used on scale with
real-world samples for which we do not have their original source code available, we also did a
measurement study on the general prevalence of code injection techniques in the wild. We col-
lected 47,128 random samples from the VirusTotal Academic Datasets [58] spread over the years
2017-2021 and ensured each sample was flagged by at least three AV engines (as suggested by
related work [61]). We then used AVClass [54] to assign samples to family labels. Table 4 describes
this resulting dataset and its family distribution.

Analysis Timeout. According to previous work [32], around 65% of malware runs completely
in less than 2, and 81% does not need longer than 10 minutes to fully cover its entire state space.
Since the main use-case of code injection is to be an evasion technique, it is likely also one of the
first actions the malware performs. Therefore, we pick 6 minutes as a time limit per sample for our
prevalence measurement.

5.2 Framework Assessment

Table 5 shows an overview of the classification capabilities of our framework using Behavior Nets
on our ground truth dataset. We make a distinction between picking up on the presence of code
injection and exactly classifying the techniques. In the following, we will discuss the performance
of our framework in more detail.

5.2.1 Classification Capabilities. Our framework successfully recognizes the usage of code
injection for all techniques using Behavior Nets, except for IAT Hooking. While this technique is
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Table 4. Malware Family Distribution in Our Dataset

[ Total [ 2017 | 2018 | 2019 | 2020 | 2021

Family Cnt. Pos.| Cnt. Pos.|Cnt. Pos.|Cnt. Pos.|Cnt. Pos.|Cnt. Pos.
virlock 5,783  0.5% 111 1.8%| 131 0.8%| 301 9.3% | 5,057 0.0%| 183 0.0%
dinwod | 3,180 0.1%| 2,763  0.0% 71 2.8% 71  0.0% 72 0.0%| 203  0.0%

sivis 1,066 0.0% 12 0.0% 86 0.0% 71 0.0% 19  0.0%| 878 0.0%
berbew 862 99.0% 144 100.0% 12 100.0% | 283 100.0%| 105 96.2%| 318 98.4%
upatre 862 0.2% 190 1.1%| 209 00%| 187 0.0%| 189 0.0% 87 0.0%
virut 861 1.4% 200 50%| 138 0.0%| 486 0.2% 33 3.0% 4  0.0%
delf 843 5.8% 31 3.2% 52 39% | 189 13.2%| 136 154%| 435 0.0%
kolabc 837 0.0% 2 0.0% 12 0.0% 8 0.0% 0 0.0% | 815 0.0%
vobfus 816 1.2% 156 0.6% | 225 1.3% 41 9.8% 14 0.0%| 380 0.5%
wapomi 738 0.4% 318 0.9% 63 0.0% 17 0.0%| 339 0.0% 1 0.0%
wabot 596  0.0% 377 0.0% 50 0.0%| 117 0.0% 43 0.0% 9 0.0%
vindor 594 0.0% 32 0.0% 36 0.0% 37  0.0% 0 0.0% | 489 0.0%
allaple 567 0.2% 193 0.5% 88 0.0%| 276  0.0% 9 0.0% 1 0.0%
gator 530 0.0% 63 0.0% 2 0.0% | 103 0.0% 34 0.0%| 328 0.0%

hematite 470  0.0% 15 0.0%| 197 0.0%| 230  0.0% 26 0.0% 2 0.0%
vtflooder 462 0.4% 137 1.5% 32 0.0% 58  0.0% 23 0.0% | 212 0.0%
shipup 428 88.8% 58 94.8%| 251 90.0% 59 86.4% 55 81.8% 5 60.0%
gepys 418 89.2% 27 889%| 277 89.2% 67 82.1% 40 100.0% 7 100.0%
Other 27,215 9.4%| 5395 11.1%| 6259 9.5% | 6424 12.2% | 3498 8.3% | 5,642 4.9%
Total 47,128 9.1% 10,224  8.3% (8,191 13.4%|9,025 13.6% | 9,692 5.1% | 9,999 6.1%

The columns indicate the sample count and the fraction of positive samples.

Table 5. Overview of All Recognized Code Injection Techniques

Behavior Nets ‘ Cuckoo Sandbox

Technique | Match Exact | Suspect Detect
Process Hollowing v v
Thread Hijacking v v
IAT Hooking
CTray Hooking
APC Shell Injection
APC DLL Injection
Shellcode Injection
PE Injection
Reflective DLL Injection
Memory Module Injection
Classic DLL Injection
Shim Injection
Image File Execution Options
ApplInit_DLLs Injection
AppCertDLLs Injection
COM Hijacking
Windows Hook Injection

SNEN

SNENENEN
SN NN NENENENENEN

SN NN N NN NENENENEN

SNENENENENENEN
&
&

Match indicates some form of injection was recognized. Exact indicates a correct
identification of the technique. Suspect and Detect indicate a suspicion and a definitive
detection respectively as reported by Cuckoo Sandbox [5]. An asterisk (*) indicates it
may be confused with another technique.
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destructive, we cannot recognize these injections due to Behavior Nets not being able to test for
faulty or absent behavior as a result of rerouting an API call. Furthermore, this technique only
requires two calls to NtWriteVirtualMemory for both transmitting and preparing the catalyst,
respectively. While we can observe these calls, we cannot distinguish between the ones that
place hooks and inject other types of memory. Note that, this does not mean that Behavior Nets
are blind to destructive techniques. For example, in Process Hollowing, the catalyst always calls
NtSetContextThread and NtResumeThread, whose arguments can be traced back to previously
observed transmitter API calls, and thus can be reliably tested for. However, our framework
sometimes confuses it with Thread Hijacking, as many hollowing implementations are nearly
identical to it, and only include an extra call to NtUnmapViewOfSection to “hollow” out the victim
process before the payload is transmitted. Again, while Behavior Nets can encode this call for
Process Hollowing, they cannot encode its absence for Thread Hijacking, causing the latter to be
sometimes incorrectly identified as well. Therefore, if both techniques were detected in a sample,
we assume that only Process Hollowing was implemented instead.

For three techniques (PE Injection, Reflective DLL Injection, and Memory Module Injection),
our framework can recognize the presence of an injection, but not exactly identify the specific
technique. The limited granularity of the system call trace causes some techniques to have a
near-identical pattern of system calls for their transmitters and catalysts. In this case, the three
methods become indistinguishable from Shellcode Injection, and can therefore only be classified as
such. This is a reasonable compromise, as, since the only difference between these techniques is
the format of the actual injected memory, they can be seen as a special case of injected shellcode.
Thus, while this classification does not completely reflect the exact exhibited technique, it is not
an incorrect classification either. All these techniques belong to the sample class in our taxonomy.
We, therefore, refer to this group of injections as Generic Shell Injection.

5.2.2  Performance Metrics. All samples that do not implement code injection were correctly
marked negative by our evaluation of Behavior Nets. The 1,147 benign Windows applications were
also marked negative, except for one System32 program. This program (osk. exe) implements an
on-screen keyboard and simulates key presses when the user clicks the virtual key buttons. We
found that it indeed uses Windows Hook Injection to send the simulated key presses to other
processes. This confirms that code injection is also used for legitimate purposes, emphasizing that
the use of code injection is insufficient for classifying a sample as malicious.

Our evaluation of Behavior Nets has a true positive rate of 87.50% and an F1-score of 93.0% on the
samples that implement code injection. The false negatives are mainly caused by some samples
not activating themselves during the analyses. In particular, implementations of Windows Hook
Injection are susceptible since their catalyst sometimes requires user input (e.g., key presses) to
run the payload. Note that, this is not a limitation of Behavior Nets but rather of any examination
environment based on dynamic analysis, and could be mitigated by programmatically introducing
(random) interactions in the sandbox (as is done in e.g., Cuckoo [5]).

5.3 Importance of Behavior Nets

The core aspect of our Behavior Nets is their ability to model and track event interdependence
by imposing symbolic constraints on their arguments. To assess how this aspect improves
the classification over existing models that do not consider event context nor the dependency
relations between events (e.g., YARA [10], SIGMA [8] or CAPA [3] rules, as well as most Cuckoo
[5] signatures), we ran two more experiments on our ground truth data set. First, we remove
all dependencies in our models, simulating signatures that test for the mere presence of events
with some basic heuristics (e.g., testing whether a NtWriteVirtualMemory call writes to another
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Table 6. True Positive Rate, False Positive Rate, and F1-score of Three Approaches: (1)
Testing for the Mere Presence of Relevant APls; (2) Testing for the Presence and Order
of Relevant APIs; (3) Behavior Nets

Match ‘ Exact
Approach
TPR FPR F1-score | TPR FPR F1-score
APIs only 100.00% 57.37% 0.17 89.06% 57.37% 0.15

APIs + order 100.00% 55.43% 0.18 93.75% 55.43% 0.17
Behavior Nets | 87.50% 0.00% 0.93 87.50% 0.00% 0.93

The Match and Exact columns differentiate between recognizing code injection and precisely
classifying the used technique.

process). Second, we reintroduce the general order in which the events should occur but leave out
the constraints put on their arguments. Finally, we verify how these augmented models compare
to our original Behavior Nets.

Table 6 depicts the confusion matrices when we run the analyses on both the samples that
implement code injection, as well as the benign applications that do not. Again, we make the
distinction between recognizing the presence of code injection and exactly classifying the used
technique, which is crucial when performing an in-depth prevalence measurement (Section 5.5). In
both cases, we can see that the false positive rate is significantly higher for the first two approaches.
This intuitively makes sense, as an event stream of an entire system contains a lot of noise from
background processes. As discussed in Section 3, only testing for the presence or order of events
is therefore bound to result in many false positives. Similarly, it is also important to note that the
higher true positives for these two approaches are not necessarily actual detections either. Since
most techniques rely on very commonly used APIs, a call to such an API will likely be observed
regardless of whether an injection occurred or not. Finally, we see a slight drop in the true positive
rate achieved by our approach using Behavior Nets. Similar to what was discussed in Section 5.2.2,
this can mainly be attributed to the fundamental limitations of dynamic analysis itself, where
samples do not always activate themselves.

5.4 Comparison with Existing Tools

We ran our code injection samples through Cuckoo Sandbox [5], a widely used malware analysis
tool that also features a large repository of community maintained signatures, including signatures
for detecting the use of code injection.! The results can be seen in the last two columns of Table 5.
In these columns, we see that the majority of samples implementing an active technique were
picked up as a potential suspect, from which only three were a definitive positive. This is because
Cuckoo mainly relies on the presence of single API calls traditionally used by code injections. As
stated in Section 3.1 and demonstrated in Section 5.3, considering single APIs is insufficient to
test with confidence whether an injection actually occurred, and as such, Cuckoo must resort to
marking samples as suspicious. Additionally, we see that most of the passive techniques were not
identified by Cuckoo, further confirming our beliefs that passive techniques are often overlooked.
In contrast, our Behavior Net-based signatures can detect the interdependence between multiple
API calls and do not rely on traditional APIs only. This allows us to tell whether a specific
technique was implemented or not more reliably, regardless of whether the technique is active
or passive.

10ther online sandboxes exists [2, 7] but they are closed-source and require paid subscriptions to access all functionalities
(e.g., 64-bit analyses).
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Table 7. Observed General Prevalence and Distribution of Code Injection Techniques in the Sample Set
from 2017 to 2021

Technique 2017 2018 2019 2020 2021 Total

Process Hollowing 230 27.2% 260 23.6% 276 22.5% 92 18.5% 92 15.2%| 950 22.2%
Thread Hijacking 87 103% 123 11.2% 78 6.4% 12 24% 52 8.6%| 352 8.2%
CTray Hooking 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
APC Shell Injection 2 0.2% 13 1.2% 1 0.1% 2 0.4% 3 0.5% 21 0.5%
APC DLL Injection 0 0.0% 0 0.0% 1 0.1% 1 02% 0 0.0% 2 0.1%
Generic Shell Injection | 174 20.6% 138 12.6% 218 17.7% 83 16.7% 37 6.1%| 650 15.2%
Classic DLL Injection 2 0.2% 4 04% 70 57% 3 06% 0 0.0% 79 1.9%
Shim Injection 0 0.0% 0 0.0% 0 00% 0 00% 0 0.0% 0 0.0%
IFEO 86 10.2% 25 2.3% 61 5.0% 75 151% 80 13.2%| 327 7.6%
Applnit_DLLs Injection 86 10.2% 519 47.2% 170 13.8% 137 27.5% 19 3.1%| 931 21.8%
AppCertDLLs Injection 0 0.0% 0 0.0% 0 00% 0 00% 0 0.0% 0 0.0%
COM Hijacking 240 28.4% 69 63% 406 33.0% 111 22.3% 341 56.4% | 1167 27.3%
Windows Hook Injection | 0 0.0% 4 04% 21 17% 7 14% 0 0.0%| 32 0.8%
Total 846 8.3% 1100 13.4% 1229 13.6% 498 5.1% 605 6.1%|4278 9.1%

5.5 Prevalence Measurement

Now that we confirmed our Behavior Nets are capable of distinguishing between different tech-
niques, we can apply them on a larger scale and measure the adoption of the different code injection
techniques in the malware scene. Table 4 summarizes the observed prevalence of code injection
within our dataset of 47,128 samples. We identified a total of 4,278 samples (9.1%) that perform at
least one type of code injection. To further test whether the classifications made by our Behavior
Nets are consistent, we picked 20 positive samples covering all the detected techniques and 20
negative samples, and we manually verified our results. To the best of our reversing effort, all the
classifications made by our framework were correct. Naturally, this does not exclude the presence
of undetected false negatives (which we will discuss in Section 7). Overall, the fraction of samples
observed to adopt code injection varies from 5.1% to 13.6% per year. While this fluctuation does
not seem to follow any particular motif, the distribution of the implemented techniques over time
reveals interesting patterns.

Table 7 and Figure 6(a) show the distribution of the different adopted techniques in our large-
scale measurement, and Table 8 shows the generally observed preference of techniques in each
of the years 2017-2021. Note that, the percentages do not add up to 100% as some samples imple-
ment multiple code injection techniques. Specifically, 94.65% of the positive samples in our dataset
manifested one injection technique, 5.26% manifested two techniques, and four samples exhibited
three techniques.

We can see that Process Hollowing and Generic Shell Injection are among the more popular
choices of malware authors. Since these are traditional methods, and the majority of malware
authors tend to copy code from others [19], this is an expected result and further confirms our
Behavior Nets are truthful in characterizing the different variants of code injection correctly.
However, interestingly, our Behavior Nets also highlight that the popularity of these two active
techniques is decreasing, while other techniques are on a rise. If we aggregate all techniques by
their class, as shown in Table 9, we can see that many of these rising techniques are Configuration-
based injections. Most notably, in 2018, the AppInit_DLLs Injection technique almost overcame all
active techniques combined on its own, and in 2020, the aggregation of all Configuration-based
techniques convincingly surpassed them.

Since samples within a family often employ very similar behaviors [15], and families differ in
size, some techniques might be overrepresented in Figure 6. Thus, Figure 6(b) presents a different
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Table 8. General Preference of Technique Adopted by Malware Families (App/nit:

Applnit_DLLs Injection, COM: COM Hijacking, Hollow: Process Hollowing, IFEO:

Image File Execution Options, Shell: Generic Shellcode Injection, Thread: Thread
Hijacking, and WHook: Windows Hook Injection)

Family 2017 2018 2019 2020 2021 Total
virlock COM Shell Shell Shell
dinwod COM COM COM
berbew COM COM COM COM COM COM
upatre COM COM
virut IFEO Shell WinHook IFEO
delf Thread Thread Hollow  Hollow Hollow
vobfus Hollow Hollow Hollow Hollow | Hollow
wapomi COM COM
allaple COM COM
vtflooder | COM COM
shipup Applnit  Applnit Applnit  Applnit  Applnit | Applnit
gepys Applnit Applnit Applnit  Applnit  Applnit | Applnit
Other Hollow Hollow Hollow Shell Hollow | Hollow
Total COM  Applhhit COM Applnit COM COM

Table 9. Distribution of Classes of Code Injection Techniques Exhibited by Malware in the Sample
Sets from 2017 to 2021

Class 2017 2018 2019 2020 2021 Total

Active 495 58.5% 538 48.9% 644 52.4% 193 38.8% 184 30.4% | 2054 48.0%
Intrusive 319 37.7% 396 36.0% 356 29.0% 107 21.5% 147 24.3%|1325 31.0%
Destructive 317 37.5% 383 34.8% 354 28.8% 104 20.9% 144 23.8%|1302 30.4%
Non-Intrusive 176 20.8% 142 12.9% 288 23.4% 86 17.3% 37 6.1%| 729 17.0%
Passive 412 48.7% 617 56.1% 658 53.5% 330 66.3% 440 72.7% | 2457 57.4%
Configuration-Based | 412 48.7% 613 55.7% 637 51.8% 323 64.9% 440 72.7% | 2425 56.7%
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Fig. 6. Observed distribution of code injection techniques exhibited by malware in our dataset.
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view of the data, where all samples within the same family are considered as one instead. If one
sample within a family performs a given type of code injection, then this family is considered to
implement this technique. We see Process Hollowing still dominating the market, closely followed
by Thread Hijacking. We also see that the adoption rates of passive techniques such as AppInit_DLLs
Injection are reduced, but remain significant and are increasing over the years.

6 Discussion

Our evaluation of Behavior Nets brings valuable insights to the malware research community,
which we will discuss in the following.

The Importance of Event Sequences in Signatures. In Sections 2.2 and 3.1 we discussed that a
single tactic that malware may implement, including most code injection techniques, often cannot
be reduced to a single API alone. Instead, they often comprise multiple APIs, and thus produce
multiple events in the event stream, that are invoked in a particular sequence. In Section 5.3, we
demonstrated that, without considering this order in which these events are invoked while trying
to extract behavioral data (as is often neglected by commonly used state of the art [3, 5, 8]), the
accuracy of characterizing malicious behavior drops significantly. Therefore, behavioral signatures
should not just look for the existence of the required events but also take into account the order in
which they need to appear.

The Importance of Context-Aware Signatures. Additionally, as system-wide monitoring is
crucial for assessing the total behavior of malware, especially when dealing with code injective
malware, malware may still end up using system calls that are indistinguishable from system calls
introduced by background processes, even when taking order into account (Table 6). Especially
when characterizing passive code injection techniques, which are extra stealthy and shown to be
used by a significant portion of the current malware scene (Table 9), this is extra important. There-
fore, considering the context in which a single event is situated is crucial when trying to characterize
a sample’s behavior, especially when dealing with system-wide recordings. We demonstrated with
Behavior Nets that this can be addressed almost in its entirety if we take the interdependence of
these individual events into account, e.g., by correlating their observed arguments and running
them through a set of constraints.

Need for Combination of Behavioral Models. As we have seen in Table 5, Behavior Nets can-
not recognize the use of the IAT Hooking code injection technique. Since this technique does not
depend on APIs to activate the injected payload, signatures that look for evidence in an event
stream will not find any. Note that, this is a fundamental limitation of any behavioral signature
model that actively tries to find evidence for existing abnormal behavior and not the absence of
normal behavior. This suggests that sandbox developers and future researchers should combine mul-
tiple approaches to be able to characterize malicious behavior.

Implications for Future Studies. Our results directly affect future research on malware analy-
sis. Studies based on dynamic analysis are bound to mischaracterize significant portions of malicious
behavior if they do not comprehensively account for the variations in which a specific behavior may
manifest as. Especially when dealing with behavior that comprises multiple APIs that can be re-
ordered without affecting the final outcome, this is crucial. We have also seen that Behavior Nets
could be an answer to this, as it does not specify the exact sequence of events but rather considers
the general pattern that is expected.

7 Limitations and Future Work

Behavior Nets do not come without their limitations. In the following we will describe the most
important ones.

ACM Trans. Priv. Sec., Vol. 28, No. 3, Article 33. Publication date: August 2025.



Context-Aware Behavior Modeling for Code Injection-Based Windows Malware 33:25

Generalizability of Event Arguments. While the theoretical model of Behavior Net is fairly
generalized and allows for virtually any type of argument constraint, it can be difficult to form
a set of constraints that are generalized across some classes of malicious behavior. In particular,
this is a problem when transitions need to match an event with specific file path-like arguments.
Configuration-based code injection techniques are a prime example of this, as they access specific
keys in the Registry and thus require matching on arguments with specific Registry key paths.
While it is possible to include those paths directly as a constraint in the event pattern, it does not
encapsulate the core characteristic of abusing the settings of the OS. If another technique uses a
different registry key, a new constraint with this exact key has to be added.

Generalizability of Events. A similar limitation can be found in the use of exact system calls
in Behavior Nets. This can be problematic when different sets of API calls result in semantically
equivalent behavior. For example, both the NtCreateFile and NtOpenFile system calls can be
used to open a file on the disk for reading. A Behavior Net would then require multiple transition
nodes to match both of these options individually. This could be improved by adding a prepro-
cessing phase that lifts specific events in the trace into higher-level event classes (e.g., similar to
[35]). Alternatively, Behavior Nets could be extended to allow for matching on multiple different
types of system events within a single transition node, such that these equivalence classes could
be directly built into the graphs themselves. Both options would allow the graph to match a higher
abstraction of events that the sandbox observes while avoiding additional structural complexity.
We look to explore both of these options in the future.

Correlation versus Causation. The core mechanic behind Behavior Nets is that they can corre-
late events together based on the similarity of their observed arguments. This works well for event
streams spanning a relatively short period, which is what a typical sandbox produces when ana-
lyzing a single malware sample dynamically. However, the further apart two events are from each
other in time, the confidence that they are related to each other because they share similar-looking
arguments decreases. This is because many operating systems, including Windows, implement
mechanisms that allow for handles to be reused. For example, when a file handle is closed using
NtClose, and a new but unrelated file handle is opened using NtCreateFile, this new file handle
may share the same numerical value as the old handle that was closed before. Since only the raw
values are considered and not their origin nor the actual object they reference, a Behavior Net may
therefore incorrectly conclude that unrelated events are dependent on each other if these handles
were used in its event patterns. Therefore, a Behavior Net may be insufficient when analyzing
longer-running event streams where this is more likely to happen. We intend to explore how we
can address this problem in the future.

8 Related Work
8.1 Code Injection Identification

Determining the use of code injection has been studied in the past with varied degrees of success.
Barabosch et al. proposed a method for detecting code injection leveraging the honeypot paradigm
[15], by imitating attractive victim processes and monitoring for anomalies. However, this heavily
relies on malware selecting these decoy processes as victims. Furthermore, it also faces the
problem of not being able to monitor child processes, rendering many popular techniques such
as Process Hollowing undetectable. As an alternative approach, they also proposed to dump
the system’s memory and search for suspicious memory pages [14]. However, this assumes
that benign pages can be distinguished from injected ones, which can be difficult for passive
techniques. Furthermore, only some states of a machine are captured, requiring the victim process
to be alive upon taking snapshots if we want to find any evidence. Finally, Korczynski and
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Yin presented an approach based on system-wide taint analysis to detect the presence of code
injection and identify the responsible instructions [31]. Unfortunately, all these approaches do not
apply to our measurement framework, as they do not distinguish and classify different injection
techniques, which is essential to perform an in-depth study like ours. Proprietary sandboxes,
such as ANY.RUN [2] and Joe Sandbox [7], provide indicators of the occurrence of code injection.
However, they do not recognize the specific techniques and do not provide information about
their analysis approach, as they are fully closed-source.

8.2 Malware Behavior Modeling

Similar to ours, most automated systems for malware behavioral analysis rely on dynamic analysis
[2,4,5,7,33]. While these systems have been very thorough with their examination, they often stop
at providing basic interpretations of the logs and leave more advanced conclusions on implemented
techniques and tactics up to the analyst. To close this semantic gap, various technologies have
been developed to help characterize the behavior of malware based on the logs that these types of
solutions produce.

Two well-established frameworks that aim to fulfill this task are SIGMA [8] and Mandiant CAPA
[3]. Their popularity can mostly be attributed to their standardized methods for specifying rules,
making it easy to create new rules or include rules developed by third parties to extend the base
rule set. While these rules have proven to be quite effective in describing individual code or event
patterns, their core limitations are that they can only specify the existence of relatively high-level
system events and cannot be very precise in how individual patterns depend on each other. As was
demonstrated in Section 5.3, this is crucial for analyzing logs containing only low-level system
events with lots of noise. Especially when trying to detect the use of code injection on this level of
abstraction, where ordinary system calls are used a lot, this can be very difficult if not impossible
to do reliably without taking event dependency into account.

To be able to define malware behavior more precisely, various graph-based methods have been
proposed in the past. In particular, the concept of malspecs as described in [18] has been successful
in capturing the minimal required events for a behavior to manifest. Similar to Behavior Nets,
these are dependency graph-like structures that can precisely describe observed behavior and also
support non-determinism. However, malspecs can only describe events using the very specific
arguments (exact objects or string literals) that were observed during the examination and thus
are hard to generalize for use as behavior signatures. Behavior Nets, on the other hand, support
arbitrary expressions for its event pattern constraints, and thus are more flexible and effective in
capturing more variations of the same behavior with the same rule. Others such as Martignoni
et al. and Kolbitsch et al. have proposed extensions to malspecs in the form of behavior graphs
[30, 35], which do allow for more complex structures and constraints. However, the evaluation
of these graphs heavily relies on taint analysis and thus incurs heavy overhead when applying
to a system-wide monitoring solution. Behavior Nets, on the other hand, link events together by
correlating the observed values of important arguments the events were produced with, and thus
can be evaluated at a much lower computational cost.

Various methods exist to detect and characterize stealthy malware behavior by means of anom-
aly detection [53, 59]. One limitation of adopting such a strategy is that it requires a database
containing a baseline of normal behavior profiles for every potential victim process. In the case of
code injection, this task becomes infeasible as operating systems and third-party software installed
in the examination environment become more complex. Many potential victim processes (such as
explorer.exe) are either closed source or too complex to model in a single automaton or graph.
Besides, anomalies are at most a weak indicator for code injection, as there are other ways to let
benign processes behave abnormally.
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9 Conclusion

In this paper, we extended [56] by formalizing and implementing a novel, reusable, context-aware
software behavior modeling language called Behavior Nets. We showed that Behavior Nets can
be used effectively in precisely modeling malicious behaviors, including state-of-the-art code
injection techniques, that solely depend on APIs commonly used by many benign applications.
By introducing symbolic variables and event argument constraints, we showed that Behavior Net
can use the context in which a single event resides to effectively distinguish relevant events from
background noise. We evaluated the effectiveness of this approach and experimentally confirmed
that introducing context yields better results in finding and characterizing malicious behavior
reliably than strategies often employed by other commonly used sandbox solutions. Finally, our
research concluded by providing valuable insights on how future malware analysis research
based on dynamic analysis should be conducted.
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